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ABSTRACT
We examine dissipation and energy conversion in weakly collisional plasma turbulence, employing in situ observations from
the Magnetospheric Multiscale (MMS) mission and kinetic Particle-in-Cell (PIC) simulations of proton-electron plasma. A
previous result indicated the presence of viscous-like and resistive-like scaling of average energy conversion rates—analogous
to scalings characteristic of collisional systems. This allows for extraction of collisional-like coefficients of effective viscosity
and resistivity, and thus also determination of effective Reynolds numbers based on these coefficients. The effective Reynolds
number, as a measure of the available bandwidth for turbulence to populate various scales, links macro turbulence properties
with kinetic plasma properties in a novel way.

1 INTRODUCTION

Energy dissipation in fluids and plasmas may be effectively defined
as the conversion process by which macroscopic reservoirs of en-
ergy are transformed into heat. Mechanisms of energy dissipation
for weakly collisional or collisionless plasma are of central impor-
tance for addressing long-standing fundamental problems in space
and astrophysics. These include, for example, the acceleration of en-
ergetic particles and the heating of the solar corona and solar wind. In
collisional cases, the (viscous and resistive) dissipation is expressed
in a simple form in terms of viscosity, resistivity, and spatial gra-
dients of the velocity and magnetic fields. However, space plasmas
frequently reside in (nearly) collisionless regimes, where the dissipa-
tion mechanisms are not well understood. For example, in one of the
most well-studied space plasmas, the solar wind (Bruno & Carbone
2013), the collision length is of the order of 1 AU and collisions are
typically too weak to establish a local equilibrium (Maxwellian par-
ticle distribution) (Marsch 2006; Verniero et al. 2020). In such cases
the classical collisional approach becomes generally inapplicable, as
do standard closures that describe dissipation in terms of fluid-scale
variables and viscosity and resistivity.

Lacking the standard collisional closures, studies of plasma tur-
bulence have shown increasing interest in quantifying collisionless
dissipation. Investigations of collisionless dissipation have often con-
sidered one or more of the following three aspects:

(i) Dissipation mechanisms. Collisionless dissipation has often
been described in terms of specific mechanisms such as mag-
netic reconnection (Retinò et al. 2007), wave-particle interaction
(Markovskii et al. 2006; Howes et al. 2008; Chandran et al. 2010),
and turbulence-driven intermittency (Dmitruk et al. 2004; Parashar
et al. 2011). Identification of such processes affords specific physical
insight. If all possible mechanisms and their relative contributions

can be identified, a full understanding of the dissipation physics may
be achievable.

(ii) Turbulence cascade. The picture of turbulence cascade de-
scribes energy transfer across scales from an energy-containing
range, through an inertial range, and into a (small-scale) dissipation
range. Different dissipation proxies based on the turbulence cascade
process have been adopted to estimate the dissipation rate. At energy-
containing scales, the global decay rate of energy is controlled by the
von Kármán decay law (de Kármán & Howarth 1938; Hossain et al.
1995; Wan et al. 2012; Zank et al. 2017). At inertial range scales,
the Yaglom relation (Politano & Pouquet 1998; Sorriso-Valvo et al.
2007; Hadid et al. 2017; Andrés et al. 2019; Banerjee & Andrés 2020)
has been adapted to estimate the energy transfer rate. Hellinger et al.
(2022) extended this approach into the kinetic range by empirically
including pressure-strain interaction effects in the kinetic range.

(iii) Energy conversion channels. Yet another approach to under-
stand dissipation is to trace the flow of energy and examine energy
conversion between different forms. Temperature enhancement im-
plies increase of thermal energy and to specifically track thermal
energy production requires quantification of energy supplies from
energy reservoirs for each species. Two widely-invoked classes of
conversion are the electric work on particles for species 𝛼, 𝑱𝛼 · 𝑬
(Zenitani et al. 2011) and the pressure-strain interaction for species 𝛼,
− (𝑷𝛼 · ∇) · 𝒖𝛼 (Yang et al. 2017a,b). (We employ a familiar plasma
physics notation with full definitions given in Sec. 2.) These channels
play different roles: the electric work measures the release of electro-
magnetic energy, while the pressure-strain interaction measures the
increase of thermal energy.

Collisional and collisionless dissipation obviously differ from each
other, but they also share similarities. For example, in both cases, con-
version of energy between different forms can be quantified in terms
of pressure work and electric work. In collisional cases, however,
these two channels can be further approximated as viscous dissipa-
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2 Y. Yang et al.

tion via velocity gradients and resistive dissipation via electric cur-
rent density (i.e, magnetic field gradients), which will be discussed in
detail in Sec. 2. On the other hand, investigations using in situ space-
craft data (Chasapis et al. 2018; Bandyopadhyay et al. 2020a) and
numerical simulations (Wan et al. 2016; Yang et al. 2017a) support
a novel and less obvious idea, namely that collisionless dissipation is
also in direct association with velocity strain rate and electric current
density (Bandyopadhyay et al. 2023). More specifically, by quanti-
fying collisionless dissipation by the electric work 𝑱𝛼 · 𝑬 and the
pressure-strain interaction − (𝑷𝛼 · ∇) · 𝒖𝛼, these are seen to be well
correlated with, respectively, squared electric current density and
squared velocity strain rate. This association stands in direct analogy
to the resistive and viscous dissipation in collisional plasmas. It is
natural then to inquire more deeply into the behavior of collisionless
dissipation and its similarities with collisional dissipation.

Initial steps in this direction have shown two findings. First, the
global average of electric work conditioned on electric current den-
sity scales as 𝐽2, i.e., the square of the current density (Wan et al.
2016; Chasapis et al. 2018). Second, that there is a similar scaling of
pressure work with respect to 𝐷2 = 𝐷𝑖 𝑗𝐷𝑖 𝑗 , where 𝐷𝑖 𝑗 is the trace-
less velocity strain rate tensor (Bandyopadhyay et al. 2023). These
results provide strong evidence supporting the concept of collisional-
like dissipation in collisionless plasmas, and, moreover, allow a novel
estimation of effective viscosity and resistivity, which is then further
applied to define effective Reynolds numbers.

Since the classical closures of viscosity and resistivity are in-
applicable to collisionless plasmas, one might suspect that various
features of classical turbulence theory might not be applicable, in par-
ticular regarding dissipative processes and the several length scales
and dimensionless numbers related to dissipation. Even the notion of
Reynolds number (Re)—which in the hydrodynamic sense is the ratio
of the strengths of nonlinear and viscous effects—needs to be consid-
ered with caution in the absence of viscosity and resistivity. On the
other hand a point of encouragement is that wavenumber spectra in
large collisionless plasmas such as the solar wind (Bruno & Carbone
2013) often exhibit a Kolmogorov-like power-law energy spectrum
(Coleman 1968) that extends from a correlation scale (Matthaeus
et al. 2005) to smaller kinetic scales (Leamon et al. 1998), below
which the spectrum steepens. Between these scales the power-law
inertial range is expected to span a larger range when the Reynolds
number is greater, by analogy with hydrodynamics.

To achieve physically motivated generalizations of Re in the col-
lisonless case, previous studies have adopted various definitions of
effective Reynolds number, often related to the ratio of an outer scale
to an inner scale. For example

Re ≈
(
𝜆𝑐

𝜆𝑑

)4/3
or Re ≈

(
𝜆𝑐

𝜆𝑇

)2
, (1)

where 𝜆𝑐 is the correlation length, 𝜆𝑑 is a dissipation scale, and 𝜆𝑇
is the Taylor microscale (Batchelor 1970; Pope 2000). For a weakly
collisional plasma, such as the solar wind, the dissipation scale can
be presumed to be the ion inertial length 𝑑p or the ion thermal gyro-
radius (Verma 1996; Parashar et al. 2019; Cuesta et al. 2022), given
that the inertial-range spectrum terminates (and then steepens) near
these scales (Leamon et al. 1998; Smith et al. 2006; Matthaeus et al.
2008; Chen et al. 2014). Another scale related to dissipation is the
Taylor microscale 𝜆𝑇 . This has been measured in the solar wind
and then used to estimate effective Reynolds number for that system
(Matthaeus et al. 2005, 2008; Chuychai et al. 2014; Bandyopadhyay
et al. 2020b; Phillips et al. 2022). Note that both of the empirical
determinations of effective Reynolds number given by Eq. (1) de-
pend on the appropriate estimates of inner scales. Herein we adopt a

different approach that avoids any need to estimate inner scales. In a
novel examination of the putative connection between collisional and
collisionless dissipation, we explore specific evaluations of effective
viscosity, resistivity, and Reynolds number from 2.5D and 3D kinetic
Particle-in-Cell (PIC) simulations and in situ observations from the
Magnetosphere Multiscale (MMS) mission.

2 THEORETICAL BACKGROUND

We are concerned with observed phenomena related to energy con-
version processes and focus on the bulk flow energy, electromagnetic
energy, thermal energy, and the conversion and dissipation channels
that link them. For consistency in the contexts of observational and
simulation data all quantities will be expressed in SI units throughout
the paper.

2.1 Collisional cases

We start with the simplest one-fluid magnetohydrodynamic (MHD)
model. The momentum and magnetic induction equations read,

𝜌
𝜕𝒖

𝜕𝑡
+ 𝜌𝒖 · ∇𝒖 = −∇𝑝 − ∇ · 𝚷 + 𝑱 × 𝑩, (2)

𝜕𝑩

𝜕𝑡
− ∇ × (𝒖 × 𝑩) = 𝜂∇2𝑩, (3)

where Π𝑖 𝑗 = −𝜇
(
𝜕𝑖𝑢 𝑗 + 𝜕 𝑗𝑢𝑖

)
+ 2

3 𝜇(∇ · 𝒖)𝛿𝑖 𝑗 is the viscous stress
tensor, 𝑱 = 1

𝜇0
∇×𝑩 is the electric current, 𝜇 is the dynamic viscosity,

𝜂 is the magnetic diffusivity, and 𝜇0 = 4𝜋 × 10−7 [H · m−1] is the
magnetic permeability of free space (aka vacuum permeability).

Based on Eqs. (2) and (3) one readily obtains the collisional dissi-
pation rates of bulk flow energy density (𝐸𝑢 = 1

2 𝜌𝒖
2) and magnetic

energy density (𝐸𝑏 = 1
2𝜇0

𝑩2). These can be expressed in terms
of the coefficients of dynamic viscosity (𝜇) and electrical resistiv-
ity (1/𝜎 ≡ 𝜇0𝜂), and particular pieces of the velocity gradient and
magnetic gradient tensors:

𝐷𝜇 = 2𝜇𝐷2, (4)

𝐷𝜂 =
1
𝜎
𝐽2. (5)

Here 𝐷𝑖 𝑗 =
1
2 (𝜕𝑖𝑢 𝑗 + 𝜕 𝑗𝑢𝑖) − 1

3 (∇ · 𝒖)𝛿𝑖 𝑗 is the traceless strain rate
tensor, with 𝐷2 = 𝐷𝑖 𝑗𝐷𝑖 𝑗 the second invariant of 𝐷𝑖 𝑗 and equal to
the sum of the squares of the eigenvalues of 𝐷𝑖 𝑗 .

The viscous dissipation in Eq. (4) and the resistive dissipation in
Eq. (5) are actually the closures of the anisotropic part of− (𝑷 · ∇) ·𝒖
and the electric work 𝑱 · 𝑬 (see Eqs. (6)–(8)) in the presence of fre-
quent collisions. These can be derived by kinetic methods (Chapman
& Cowling 1939; Marshall 1960; Braginskii 1965; Kaufman 1960),
where an approximate solution for the Boltzmann equation is firstly
obtained in terms of macroscopic variables (like density, velocity,
and temperature) and the pressure tensor (the second-order moment
of the velocity distribution function) is then also expressed in terms of
macroscopic variables. The closure of the electric work (i.e., Eq. (5))
can be derived using Ohm’s law. The detailed procedure is: (i) In the
presence of frequent collisions, it can be shown that no matter what
the initial conditions are the velocity distribution function (VDF) 𝑓

must approach a Maxwellian 𝑓0 in a time of the order of the mean
time between collisions (Chapman & Cowling 1939). (ii) The VDF
𝑓 is assumed to be approximately a Maxwellian 𝑓0 and high-order
terms ( 𝑓1, 𝑓2, · · · ) are introduced as small corrections or perturba-
tions on the Maxwellian distribution function, 𝑓 = 𝑓0 + 𝑓1 + 𝑓2 + · · · .
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(iii) Retaining only the first-order correction 𝑓1 and disregarding
higher-order terms can give rise to the collisional dissipation, i.e.,
Eqs. (4) and (5).

To prescribe the applicability of the collisional approximation, we
should keep in mind its requirement: Even though the collisional
dissipation provides a simple representation of dissipation in terms
of the viscosity and resistivity, in all standard cases it applies only
when the local distribution is very close to a Maxwellian due to
particle collisions.

2.2 Collisionless cases

The time evolution of energies can be derived using the first three mo-
ments of the Boltzmann equation, in conjunction with the Maxwell
equations. One obtains (Braginskii 1965; Chiuderi & Velli 2015;
Yang et al. 2017a,b)

𝜕𝑡E 𝑓
𝛼 + ∇ ·

(
E 𝑓
𝛼𝒖𝛼 + 𝑷𝛼 · 𝒖𝛼

)
= (𝑷𝛼 · ∇) · 𝒖𝛼 + 𝑱𝛼 · 𝑬,(6)

𝜕𝑡E𝑡ℎ
𝛼 + ∇ ·

(
E𝑡ℎ
𝛼 𝒖𝛼 + 𝒉𝛼

)
= − (𝑷𝛼 · ∇) · 𝒖𝛼, (7)

𝜕𝑡E𝑚 + ∇ ·
(
𝑬 × 𝑩

𝜇0

)
= −𝑱 · 𝑬, (8)

where the subscript 𝛼 = 𝑒, 𝑝 represents the particle species (elec-

trons and protons). Here, E𝑚 =
1
2

(
𝜖0𝑬

2 + 𝑩2/𝜇0
)

is the elec-
tromagnetic energy density, with 𝑬, 𝑩 the electric and magnetic
fields; E 𝑓

𝛼 = 1
2 𝜌𝛼𝒖

2
𝛼 is the bulk flow energy density for species

𝛼, with mass density 𝜌𝛼 and bulk flow velocity 𝒖𝛼; E𝑡ℎ
𝛼 =

1
2𝑚𝛼

∫
𝑣
(𝒗 − 𝒖𝛼) · (𝒗 − 𝒖𝛼) 𝑓𝛼 d3𝑣 is the thermal energy, with mass

𝑚𝛼 and velocity distribution function 𝑓𝛼 (𝒙, 𝒗); 𝑷𝛼 is the pressure
tensor; 𝒉𝛼 is the heat flux vector; 𝑱 =

∑
𝛼 𝑱𝛼 is the total electric

current density with 𝑱𝛼 = 𝑛𝛼𝑞𝛼𝒖𝛼 the electric current density of
species 𝛼; 𝑛𝛼 (𝒙) and 𝑞𝛼 are the number density and the charge of
species 𝛼, respectively. As we can see the energy conversion between
bulk flow and thermal is quantified by the pressure-strain interaction,
− (𝑷𝛼 · ∇) · 𝒖𝛼, while the energy conversion between bulk flow and
electromagnetic is quantified by the electric work, 𝑱 · 𝑬. We empha-
size that there are no 𝑱𝛼 terms in the thermal energy equation (7).

The basic assumption of collisional dissipation is that inter-particle
collisions are sufficiently strong to maintain a local equilibrium. In
principle, this assumption is not valid in collisionless plasmas. In-
stead, the particle VDF often displays a distorted out-of-equilibrium
shape characterized by non-Maxwellian features as observed in in situ
data (Graham et al. 2017; Perri et al. 2020) and in numerical simu-
lations (Servidio et al. 2012). Although collisionless plasma can be
described by the (collisional) MHD model at large scales, spacecraft
in situ measurements reveal complex features at kinetic scales. At
these small scales, kinetic processes must take place. One widely ac-
cepted picture of solar wind fluctuations is that they are characterised
by broadband energy spectra with several spectral breaks and spec-
tral steepening at kinetic scales (Leamon et al. 1998; Sahraoui et al.
2009; Alexandrova et al. 2009; Kiyani et al. 2015). In particular, ob-
servations indicate that the steepening of velocity and magnetic field
spectra at kinetic scales is clearly dependent on the dissipation rate
(Smith et al. 2006). Clearly collisionless dissipation delves deeply
into kinetic plasma processes. Unlike collisional dissipation termi-
nating at dissipation scales, collisionless dissipation is dominant at a
range of kinetic scales.

2.3 Similarities between collisional and collisionless dissipation

Even though collisionless dissipation differs from collisional dissi-
pation in several ways, studies also suggest that there are similarities
between them. First, they are both organized in structured patterns
and concentrated at, or near, coherent structures. Coherent structures
form dynamically in MHD and plasma flows and are found to be
of importance in heating. They include current sheets and vortices.
According to the definition of collisional dissipation in Eqs. (4) and
(5), it should not be at all surprising to find that the collisional dissi-
pation occurs with intense values at (and near) these structures. The
physical quantities that are responsible for the conversion of energy
in collisionless plasmas (see Eqs. (6)-(8)) are also found in the same
kind of spatial localization (Osman et al. 2011; Retinò et al. 2007;
Yang et al. 2017a; Servidio et al. 2012; Franci et al. 2016; Parashar
& Matthaeus 2016). In this sense, both collisional and collisionless
dissipation concentrates in structured patterns. Second, they are both
in direct association with velocity strain rate and electric current
density. As we have already remarked, collisionless dissipation, as
quantified by the electric work 𝑱𝛼 ·𝑬 and the pressure-strain interac-
tion − (𝑷𝛼 · ∇) · 𝒖𝛼, is found to be in direct association with 𝐽2 and
𝐷2 (Chasapis et al. 2018; Bandyopadhyay et al. 2020a; Wan et al.
2016; Yang et al. 2017a; Bandyopadhyay et al. 2023), and this scaling
is analogous to the resistive and viscous dissipation that Eqs. (4) and
(5) represent.

We therefore conjecture that a closure for collisionless dissipation
that is similar to collisional dissipation is plausible, in a statistical
sense, the details of which are to be determined. That is, we suggest
that

⟨−Π𝑖 𝑗𝐷𝑖 𝑗 |𝐷⟩ ∼ 2𝜇𝐷2, (9)

⟨𝑱 · 𝑬′ |𝐽⟩ ∼ 1
𝜎
𝐽2, (10)

where Π𝑖 𝑗 = 𝑃𝑖 𝑗 − 𝑝𝛿𝑖 𝑗 is the deviatoric pressure tensor, and
𝑬′ = 𝑬 + 𝒖𝑒 × 𝑩 is the electric field in the electron fluid frame.
⟨−Π𝑖 𝑗𝐷𝑖 𝑗 |𝐷⟩ is the average of the anisotropic part of the pressure-
strain interaction conditioned on 𝐷 ≡

√︁
𝐷𝑖 𝑗𝐷 𝑗𝑖 , and ⟨𝑱 ·𝑬′ |𝐽⟩ is the

average of the electric work in the electron fluid frame conditioned on
the (local) current magnitude 𝐽 = |𝑱 |. If the scalings in Eqs. (9) and
(10) can be verified, they will permit an evaluation of effective val-
ues for dynamic viscosity 𝜇 and electrical resistivity 1/𝜎, and thence
for effective kinematic viscosity 𝜈 = 𝜇/𝜌 and magnetic diffusivity
𝜂 = 1/(𝜎𝜇0) .

3 DATA

We present data from 2.5D and 3D fully kinetic PIC simulations and
one long MMS burst-mode interval in the magnetosheath. In each
case the analysis leads to a determination of the associated (effective)
resistivity and separate viscosities for electrons and protons.

The 2.5D PIC simulation employs the P3D code (Zeiler et al.
2002), which has also been used in Yang et al. (2022, 2023) and
Bandyopadhyay et al. (2023). Here 2.5D means, as usual, that there
are three components of dependent field vectors and a 2D spatial
grid, i.e., that the phase space coordinates are (𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧). Nor-
malization in P3D is largely “proton-based”, with number density
normalized to a reference value 𝑛𝑟 , mass to proton mass 𝑚p, charge
to proton charge 𝑒, and magnetic field to a reference 𝐵𝑟 . Length is
normalized to the proton inertial length 𝑑p, time to the proton cy-
clotron time 𝜔−1

𝑐𝑝 , and velocity to the consequent reference Alfvén
speed 𝑉𝐴𝑟 = 𝐵𝑟/

(
𝜇0𝑚p𝑛𝑟

)1/2.
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Dimension 𝐿 𝑁 𝑚p/𝑚e 𝐵0 �̂� 𝛿𝑏/𝐵0 𝛽 ppg

2.5D 150 𝑑p 4096 25 1.0 0.5 0.6 3200

3D 296 𝑑e 2048 50 0.5 1.0 0.5 150

Table 1. 2.5D and 3D PIC simulation parameters in code units: domain size
𝐿; grid points in each direction 𝑁 ; proton-to-electron mass ratio 𝑚p/𝑚e;
guide magnetic field in 𝑧-direction 𝐵0; initial magnetic fluctuation amplitude
𝛿𝑏; plasma 𝛽; average number of particles of each species per grid ppg.

The particular simulation we consider is performed in a square
periodic domain of size 𝐿 = 150 𝑑p, with 40962 grid points and
3200 particles of each species per cell (∼ 1.07×1011 total particles).
For numerical expediency we employ artifically low values of the
proton to electron mass ratio, 𝑚p/𝑚e = 25, and the speed of light,
𝑐 = 15𝑉𝐴𝑟 . The run is a decaying initial value problem, starting
with uniform densities and temperatures for both species. A uniform
magnetic field, 𝐵0 = 1.0, is directed out of the plane, and the initial
plasma 𝛽 is 0.6. The initial 𝒗 and 𝒃 fluctuations are transverse to 𝐵0
(“Alfvén mode”) and have Fourier modes with random phases for the
wavenumber range 2 ≤ |𝒌𝐿/(2𝜋) | ≤ 4. The initial normalized cross
helicity 𝜎𝑐 is negligible.

The 3D simulation (Roytershteyn et al. 2015) is obtained using the
VPIC code (Bowers et al. 2008), which was also used in Yang et al.
(2022) and Bandyopadhyay et al. (2023). VPIC normalization differs
significantly from that in P3D, being more electron based. Number
density is normalized to a reference value 𝑛𝑟 , mass to electron mass
𝑚e, charge to proton charge 𝑒, length to the electron inertial length
𝑑e, time to the electron plasma oscillation time 𝜔−1

𝑝𝑒, velocity to the
(true physical) speed of light 𝑐, and magnetic field to a reference
𝐵𝑟 = 𝑚e𝑐𝜔𝑝𝑒/𝑒.

The simulation of interest herein was performed in a cubic periodic
domain of size 𝐿 = 296 𝑑e, with 20483 grid points and 150 particles
of each species per cell (∼ 2.6 × 1012 total particles). The proton to
electron mass ratio is 𝑚p/𝑚e = 50. Like the P3D run, this one is also
a decaying initial value problem, starting with uniform density and
temperature of protons and electrons. There is a uniform magnetic
field 𝐵0 = 0.5 in the out-of-plane �̂� direction, and the plasma 𝛽

is 0.5. The 𝒗 and 𝒃 fluctuations are initialized with two orthogonal
polarizations and an overall power spectrum decaying as 𝑘−1 for
the wavenumber range 1 ≤ |𝒌𝐿/(2𝜋) | ≤ 7 with equal power in
each polarization. The initial 𝒗 and 𝒃 fluctuations are a mixture of
Alfvénic and randomly phased perturbations. The initial normalized
cross helicity is 𝜎𝑐 ≃ 0.44.

Key parameters for the 2.5D and 3D runs are given in Table 1. For
both runs we analyze statistics at a time shortly after that at which
the maximum mean square current density occurs. Prior to analyses,
we remove noise inherent in the PIC plasma algorithm via a low-pass
Fourier filtering of the fields.

In addition to simulation data we also analyze an interval of MMS
spacecraft data. The MMS mission provides high time cadence and si-
multaneous multi-spacecraft measurements, typically in a tetrahedral
formation, with small inter-spacecraft separations. The MMS space-
craft sample the near-Earth plasma including the magnetosheath
(Burch et al. 2016). The proton and electron three-dimensional veloc-
ity distribution functions (VDFs) are available from the Fast Plasma
Investigation (FPI) (Pollock et al. 2016) instrument. One can then de-
termine density, velocity, pressure tensor, and current density, with a
time resolution of 150 ms for ions and 30 ms for electrons. The Flux-
Gate Magnetometer (FGM) (Russell et al. 2016) measures the vector

magnetic field, and the Electric Field Double Probes (EDP) (Ergun
et al. 2016) measures the electric field. Herein we employ a single
long-burst interval of MMS data obtained in the magnetosheath (see
Table 3). For this interval the mean plasma velocity is approximately
230 km s−1 and the inter-spacecraft separation is about 27 km, which
is below the ion inertial length and corresponds to a few times the
electron inertial length. As shown in previous studies (Parashar et al.
2018; Bandyopadhyay et al. 2020a; Yang et al. 2023; Bandyopad-
hyay et al. 2023), this interval exhibits features of well-developed
turbulence.

4 RESULTS

4.1 Kinematic Viscosity and Magnetic Diffusivity

To determine the values of the effective diffusion coefficients, we
employ a method based on the recent work of Bandyopadhyay et al.
(2023). The basic procedure, for the case of resistivity determina-
tion, is to compute ⟨𝑱 · 𝑬′ |𝐽⟩, which is the average of the electric
work in the electron fluid frame conditioned on the (local) current
magnitude 𝐽 = |𝑱 |, and investigate its dependence on 𝐽. As was
noted previously (Wan et al. 2016; Bandyopadhyay et al. 2023), this
conditional average is found to follow a curve ⟨𝑱 · 𝑬′ |𝐽⟩ ∼ 𝐽2 to a
reasonable degree of accuracy, as shown here in the top row of Fig. 1.
The error bars are computed from the standard deviation in each bin.
Using this quadratic scaling agreement we evaluate the constants of
proportionality for the two simulations and for the MMS data, thus
providing an estimation of the effective resistivity for the respective
cases. The functional form of the trend is strongly similar to that of
the collisional case, as given in Eq. (5). This accounts for the heuristic
description of the result as “collisional-like”. These values of “effec-
tive resistivity” 1/𝜎, within 95% confidence interval, are shown in
the legend of Fig. 1 and tabulated in Table 3 in the respective units.

A similar procedure is followed for the the conditional average
of the anisotropic part of the pressure-strain interaction, Pi-D(𝛼) (=
−Π (𝛼)

𝑖 𝑗
𝐷

(𝛼)
𝑖 𝑗

), which represents the incompressive contribution to
the rate of production of thermal energy (Braginskii 1965; Chiuderi
& Velli 2015; Yang et al. 2022). This is done separately for electrons
and protons. Specifically, we compute the average of electron Pi-D𝑒

conditioned on 𝐷𝑒 ≡
√︃
𝐷𝑒
𝑖 𝑗
𝐷𝑒

𝑗𝑖
, that is ⟨−Π𝑒

𝑖 𝑗
𝐷𝑒
𝑖 𝑗
|𝐷𝑒⟩. Recall that

the traceless strain rate tensor for the electron fluid velocity is 𝐷𝑒
𝑖 𝑗

=

1
2 (𝜕𝑖𝑢

𝑒
𝑗
+𝜕 𝑗𝑢𝑒𝑖 )−

1
3 𝛿𝑖 𝑗∇·𝒖

𝑒. The general trend is quite consistent with
the collisional scaling in Eq. (4), as shown in the second row of Fig. 1.
Thus the resulting approximation, that ⟨−Π𝑒

𝑖 𝑗
𝐷𝑒
𝑖 𝑗
|𝐷𝑒⟩ ∝ (𝐷𝑒)2, is

indeed a collisional-like representation of the average results.
The analysis for the proton case proceeds in direct analogy to

the electron case, with the results shown in the third row of Fig. 1.
The conditional average of proton Pi-D𝑝 is also found to be well
approximated by a fit to a collisional-like scaling, as described in
Eq. (4). That is, ⟨−Π𝑝

𝑖 𝑗
𝐷

𝑝

𝑖 𝑗
|𝐷 𝑝⟩ ∝ (𝐷 𝑝)2, where 𝐷 𝑝

𝑖 𝑗
is the traceless

strain rate tensor for the proton fluid velocity and 𝐷 𝑝 ≡
√︃
𝐷

𝑝

𝑖 𝑗
𝐷

𝑝

𝑗𝑖
.

One might notice that, unlike the positive definite collisional dis-
sipation in Eqs. (4) and (5), ⟨−Π (𝛼)

𝑖 𝑗
𝐷

(𝛼)
𝑖 𝑗

|𝐷 (𝛼) ⟩ is sign-indefinite,
especially for the MMS data. Here we presume the existence of uni-
form viscosity and resistivity, without taking into account the sign
effect. That is, for any negative conditional averages, we are taking
their absolute values to fit the collisional scalings. A more careful
and refined treatment of the sign effect is deferred to a future study.

All of the above results, including computations of the effec-

MNRAS 000, 000–000 (0000)



Effective Viscosity, Resistivity, and Reynolds Number in Weakly Collisional Plasma Turbulence 5

| ⟨𝑩⟩ |[nT] 𝛿𝐵/| ⟨𝑩⟩ | ⟨𝑛e ⟩ [cm−3 ] ⟨𝑛p ⟩ [cm−3 ] 𝛽𝑝 𝑑p[km] 𝑑e[km] 𝐿[km]

2017 Dec 26 06:12:43-06:52:23 22.0 0.8 24.9 22.8 4.5 48 1.1 27

Table 2. Description of one selected magnetosheath interval of MMS data. | ⟨𝑩⟩ | is the mean magnetic field strength; 𝛿𝐵 =
√︁
⟨ |𝑩 (𝑡 ) − ⟨𝑩⟩ |2 ⟩ is the root-

mean-square magnetic fluctuation; ⟨𝑛⟩ is the mean plasma density; 𝛽𝑝 is the proton plasma beta; 𝑑p and 𝑑e the ion and electron inertial lengths; 𝐿 indicates
the mean separation between spacecraft.

tive kinematic viscosity (𝜈 = 𝜇/𝜌) and magnetic diffusivity (𝜂 =

1/(𝜎𝜇0)) are shown in Table 3. Note that the diffusion coefficients
from P3D and VPIC are expressed in the respective code units. To
facilitate a direct comparison of the simulation numbers with MMS,
we use the plasma properties measured for the MMS interval to
convert the diffusion coefficients from code units to SI. That is, to
compute the units in P3D, we need to use the proton inertial length
𝑑p, proton cyclotron frequency 𝜔𝑐𝑝 , Alfvén speed 𝑉𝐴, mean elec-
tron number density ⟨𝑛𝑒⟩ measured over the MMS interval, and the
real-life values of proton mass 𝑚p = 1.67 × 10−27 kg and proton
charge 𝑒 = 1.6 × 10−19 C. Similarly, to compute the VPIC units, we
need to use the electron inertial length 𝑑e, electron plasma frequency
𝜔𝑝𝑒, mean electron number density ⟨𝑛𝑒⟩ from the MMS interval,
and the real-life values of electron mass 𝑚e, proton charge 𝑒, and
speed of light 𝑐. Finally, the effective kinematic viscosity and effec-
tive magnetic diffusivity from the two PIC simulations and the MMS
interval are all expressed in SI units, m2/s; see Table 4. Note that the
viscosity and diffusivity are widely distributed for different datasets,
reflecting the physical difference between the simulations and MMS
data.

4.2 Empirical determination of Reynolds numbers

Given a diffusivity, a general prescription to obtain a Reynolds num-
ber (Re) is to assemble

Re =
speed × length

diffusivity
, (11)

where the speed and length are those characteristics of the turbu-
lence. The results in the previous section make it possible to com-
pute effective Reynolds numbers Re as described in Eq. (11), since
we now have quantitative values for the (effective) diffusivities 𝜂, 𝜈𝑒
and 𝜈𝑝 . Choosing the correlation scales for the species velocities,
𝜆𝑐,𝛼 (𝛼 = 𝑒, 𝑝 for electrons and protons, respectively), and magnetic
field, 𝜆𝑐,𝑏 , as the characteristic lengths, we may write separate ef-
fective Reynolds numbers for the electron and protons, Re𝑐,𝛼, and
an effective magnetic Reynolds number, Re𝑐,𝑏 , as

Re𝑐,𝛼 =
𝑢𝛼𝜆𝑐,𝛼

𝜈𝛼
, (12)

Re𝑐,𝑏 =
𝑢𝜆𝑐,𝑏

𝜂
. (13)

Here, 𝑢𝛼 are the characteristic fluctuation speeds for each species. For
the magnetic Reynolds number, the characteristic speed is denoted 𝑢

and there is some flexibility in deciding what value to use for it.
The required values of correlation scale can be obtained as follows:

The scale-dependent auto-correlation function is defined as

𝑅(𝒓) = ⟨𝑭(𝒙 + 𝒓) · 𝑭(𝒙)⟩
⟨𝑭(𝒙) · 𝑭(𝒙)⟩ , (14)

where 𝑭 can be either the fluctuation velocity or magnetic field.
Note that 𝑅(𝒓) is a function of lag vector 𝒓 = (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧). Upon

averaging over directions, 𝑅(𝒓) only depends on lag length 𝑟 = |𝒓 |,
and 𝑅(𝑟) denotes the omnidirectional form of the auto-correlation
function. Based on computation of the auto-correlation function, the
correlation scale 𝜆𝑐 can be defined in several ways. Here we employ
the so-called “e-folding” method,

𝑅(𝜆𝑐) = 1/e, (15)

where the correlation scale is computed as the scale where the auto-
correlation function drops to 1/e, on the basis that e−𝑟/𝜆𝑐 is an
adequate approximation for 𝑅(𝑟) (Matthaeus et al. 1999; Smith et al.
2018).

Figure 2 shows the results of our correlation analysis of simulation
data and MMS observations. These results are employed to extract
correlation lengths. The average bulk speed in this MMS interval is
approximately𝑉𝑆𝑊 = 230 km s−1, which is used to convert temporal
scales to spatial scales for the MMS data. Characteristic fluctuation
speeds and correlation scales for these three datasets are recorded
in Table 5. As the two codes use different normalizations, Table 5
also indicates the relevant normalizing quantities, or units, in square
brackets. Together with the (effective) kinematic viscosities and mag-
netic diffusivities listed in Table 3, these are combined in accordance
with Eqs. (12) and (13) to compute the three corresponding effective
Reynolds numbers, shown also in Table 5. Notably, for the simulation
cases the three Reynolds numbers are all rather similar, whereas for
the MMS interval there are sizable differences, which could be at-
tributed to the uncertainties when computing the correlation length.

5 DISCUSSION AND CONCLUSIONS

This paper elaborates and extends the previous work by Bandyopad-
hyay et al. (2023) in which the initial analysis of conditional averages
was presented, indicating that a collision-like dissipation may be
present in collisionless plasma, as suggested by consistency of the
data with Eqs. (9) and (10). Here we have quantitatively examined
these approximate relations and determined effective viscosities for
electrons and protons as well as an effective resistivity. This was
carried out separately for two plasma kinetic (PIC) simulations, one
2.5D and one 3D, and for a sample of magnetosheath turbulence data
recorded by the MMS mission. Having determined effective diffusion
coefficients, and using measured fluctuation speeds and correlation
scales, the assembly of effective Reynolds numbers follows directly.

From the effective large-scale Reynolds number, Re𝑐 , relationships
involving the plasma equivalent of the Kolmogorov dissipation scale,
𝜆𝐷 , may also be formulated,

𝜆𝑐

𝜆𝐷
= 𝐶

1/4
𝜖 Re3/4

𝑐 , (16)

where𝐶𝜖 is the dimensionless dissipation rate. This relation is formu-
lated based on the classic development in hydrodynamic turbulence
theory (Kolmogorov 1941a,b; Batchelor 1970), and may be used in
several ways. One might substitute measured correlation scales 𝜆𝑐
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2.5D P3D 3D VPIC MMS

Figure 1. Conditional average of (top) the electromagnetic work 𝑱 · 𝑬′ with respect to the current density magnitude 𝐽 , and (middle and bottom) Pi-D(𝛼) (=
−Π (𝛼)

𝑖 𝑗
𝐷

(𝛼)
𝑖 𝑗

) with respect to the traceless velocity strain rate 𝐷 (𝛼) =
√︃
𝐷

(𝛼)
𝑖 𝑗

𝐷
(𝛼)
𝑖 𝑗

. The error bars are computed from the standard deviation in each bin. The
coefficients from least-square fitting, within 95% confidence interval, are also shown.

Variables 2.5D P3D 3D VPIC MMS

1
𝜎

(5.57 ± 1.09) × 10−3 [ mp𝜔cp
nre2 ] (3.80 ± 0.11) × 10−3 [ me𝜔pe

nre2 ] (9.75 ± 2.95) × 10−4 [ mV·m
nA ]

𝜂 = 1
𝜎𝜇0

(4.43 ± 0.87) × 103 [ mp𝜔cp
nre2

m
H ] (3.02 ± 0.09) × 103 [ me𝜔pe

nre2
m
H ] (7.76 ± 2.35) × 108 [m2/s]

𝜇𝑒 (1.94 ± 0.08) × 10−4 [mpnrVArdp ] (3.43 ± 0.19) × 10−3 [menrcde ] (6.10 ± 1.44) × 10−5 [nPa · s]

𝜈𝑒 =
𝜇𝑒
𝜌𝑒

(4.85 ± 0.20) × 10−3 [VArdp ] (3.43 ± 0.19) × 10−3 [cde ] (2.69 ± 0.64) × 109 [m2/s]

𝜇𝑝 (5.31 ± 0.30) × 10−3 [mpnrVArdp ] (3.46 ± 0.15) × 10−1 [menrcde ] (8.89 ± 3.08) × 10−3 [nPa · s]

𝜈𝑝 =
𝜇𝑝

𝜌𝑝
(5.31 ± 0.30) × 10−3 [VArdp ] (6.92 ± 0.30) × 10−3 [cde ] (2.33 ± 0.81) × 108 [m2/s]

Table 3. Effective electrical resistivity 1/𝜎 and effective dynamic viscosity 𝜇 within 95% confidence interval from least-square fitting in Fig. 1, and the
corresponding effective kinematic viscosity 𝜈 = 𝜇/𝜌 and effective magnetic diffusivity 𝜂 = 1/(𝜎𝜇0 ) . The units are shown enclosed in square brackets and are
those that apply to the specific code or data interval.

Variables 2.5D P3D 3D VPIC MMS

𝜂 [m2/s] (2.44 ± 0.48) × 107 (1.21 ± 0.04) × 109 (7.76 ± 2.35) × 108

𝜈𝑒 [m2/s] (2.27 ± 0.09) × 107 (1.13 ± 0.06) × 109 (2.69 ± 0.64) × 109

𝜈𝑝 [m2/s] (2.49 ± 0.14) × 107 (2.28 ± 0.10) × 109 (2.33 ± 0.81) × 108

Table 4. Effective kinematic viscosity 𝜈 and effective magnetic diffusivity 𝜂 from Table 3 re-expressed in SI units: m2/s.
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2.5D P3D 3D VPIC MMS

Figure 2. Correlation functions for the electron velocity, proton velocity, and magnetic field for the two PIC simulations and the MMS interval.

Variables 2.5D P3D 3D VPIC MMS

𝑢𝑒 =

√︃
⟨𝒖2

𝑒 ⟩ 0.30 [VAr ] 0.055 [c] 232.8 [km/s]

𝑢𝑝 =

√︃
⟨𝒖2

𝑝 ⟩ 0.22 [VAr ] 0.032 [c] 242.1 [km/s]

𝜆𝑐,𝑒 4.1 [dp ] 17 [de ] 4380 [km]

𝜆𝑐,𝑝 7.5 [dp ] 65 [de ] 15990 [km]

𝜆𝑐,𝑏 8.5 [dp ] 36 [de ] 3690 [km]

Re𝑐,𝑒 = 𝑢𝑒𝜆𝑐,𝑒/𝜈𝑒 250 270 380

Re𝑐,𝑝 = 𝑢𝑝𝜆𝑐,𝑝/𝜈𝑝 320 300 16610

Re𝑐,𝑏 = 𝑢𝑝𝜆𝑐,𝑏/𝜂 370 310 1150

Table 5. Characteristic fluctuation speeds 𝑢, correlation scales 𝜆𝑐 , and ef-
fective large-scale Reynolds numbers Re𝑐 . Additional 𝑒, 𝑝, and 𝑏 subscripts
indicate the quantity for the electrons, protons, or magnetic field, respectively.
Here the characteristic fluctuation speed for protons, 𝑢𝑝 , is used to compute
the effective magnetic Reynolds number.

and effective Reynolds numbers Re𝑐 into the formula to extract an
estimate of the dissipation scale 𝜆𝐷 . Alternatively one might as-
sume, as has been done previously, that the dissipation scale in a
plasma such as solar wind, corresponds to the upper end of the iner-
tial range. Then if the value of 𝜆𝐷 is taken to be, for example the ion
(or electron) inertial length 𝑑p (or 𝑑e), Eq. (16) may be construed as
providing another alternative estimate of (effective) Reynolds num-
ber. There are also other approaches for estimating the dissipation
scale. For example, if the cascade rate 𝜖 is known and an effective
viscosity is available, hydrodynamic turbulence theory provides the

Kolmogorov-style estimate 𝜆𝐷 =

(
𝜈3/𝜖

)1/4
.

The Reynolds numbers determined here are roughly consistent
with reasonable estimates of the corresponding dissipation scales,
through the formulation given by Eq. (16). For example, substituting
the proton Reynolds number Re𝑐,𝑝 = 320 for the 2.5D simulations
into Eq. (16) and using a value 𝐶𝜖 = 0.5 (as in, e.g., Linkmann
et al. (2017); Bandyopadhyay et al. (2018); Li et al. (2023)) and
the measured correlation scale 𝜆𝑐,𝑝 = 7.5 𝑑p, the relation Eq. (16)
gives 𝜆𝐷 ∼ 0.1 𝑑p, which is not an unreasonable estimation. For
the MMS data, the same line of analysis leads to the estimate 𝜆𝐷 ∼
13 km. This too is a reasonable estimate for the dissipation scale
in the magnetosheath, where for this interval the value of 𝑑p is
48 km (see Table 3). In fact, there are several other ways to combine
the above values of Reynolds numbers and measured parameters to
examine consistency with traditional estimates. All the combinations
we have tried provide reasonable answers, such as values of 𝜆𝐷

that are deemed reasonable given the findings from simulations and
other observations that spectral steepening usually occurs near 𝑑p.
However, no firm guidance is available providing a more detailed
picture of a scale at which electron and proton dissipation become
dominant or “turn on” relative to each other. See, for example, Yang
et al. (2022).

Another interesting aspect of the present results is the size of
the (effective) magnetic Prandtl number 𝑃𝑚, generally defined as
the ratio of kinematic viscosity 𝜈 to magnetic diffusivity 𝜂. Here,
examining the values of the effective magnetic diffusivity and two
viscosities stated in Table 4, we see that the magnetic Prandtl number
estimates from both simulation results are near unity. For the MMS
data, the value is only moderately away from unity. The significance
of this is that when 𝑃𝑚 greatly differs from unity, different regimes
of MHD scale behavior become possible (Cho et al. 2002; Ponty
et al. 2005; Sahoo et al. 2011). In particular, in such cases the inertial
ranges in magnetic field and velocity field can develop very different
bandwidths. A value of 𝑃𝑚 near unity is consistent with the usual
finding of “Alfvénic” turbulence in which there is order one equipar-
tition of magnetic and velocity field energy in their respective inertial
ranges over very similar ranges of wavenumber.

We remark that although the classical collisional diffusivity must
obviously be absent in collisionless plasmas, a number of previous
works have nonetheless attempted to write approximate expressions
for effective diffusion coefficients in collisionless plasma. Possible
candidates that act as effective collisions include wave-particle in-
teractions (Graham et al. 2022), pitch angle scattering (Earl et al.
1988; Zank et al. 2014), stochastic field line effects, and other ki-
netic mechanisms. In particular viscosity and resistivity have been
estimated based on various approximations; for the present, we leave
aside the estimation of other transport coefficients such as heat con-
duction (Hollweg 1976; Riquelme et al. 2016). Resistivity is often
estimated using terms in the generalized Ohm’s law in terms of fluid
quantities (Graham et al. 2022; Selvi et al. 2023), or in the case of
hyper-resistivity, by consideration of contributions from anomalous
electron viscosity (Strauss 1986). A collisional-like viscosity is al-
ready present in earlier studies, such as gyroviscosity (Smolyakov
1998), cosmic-ray viscosity (Earl et al. 1988), and plasma viscosity
(Kaufman 1960). Viscous effects are often estimated by consider-
ation of the MHD-scale cascade and its implications for pressure
anisotropies (Quataert & Gruzinov 1999; Sharma et al. 2007; Verma
2019). Considerations of pressure anisotropy (Kasper et al. 2002;
Matteini et al. 2007) and linear instabilities that drive it, can be
employed to develop theories for effective viscosity. This may be
particularly effective when combined with exact results from Vlasov–
Maxwell theory, such as dissipation through the pressure-strain in-
teraction (Yang et al. 2017a). Such considerations have motivated
more elaborate approximate models for effective viscosity based on
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pressure anisotropy in the simplified CGL model (Squire et al. 2023;
Arzamasskiy et al. 2023). Valuable insights are obtained from mod-
els of this type, especially with regard to extrapolations to extreme
values of plasma 𝛽 that can be relevant to astrophysical systems
(Kawazura et al. 2019; Howes 2010; Roy et al. 2022).

Finally, we recall that several additional relationships may be
adapted from classical turbulence theory to provide alternative es-
timates for Reynolds numbers and diffusivities. One possibility is
to base measurements on the Taylor microscale 𝜆𝑇 , which can be
related directly to the second derivative of the auto-correlation func-
tion evaluated at the origin (e.g., Batchelor 1970; Pope 2000). Up to
order unity constants, 𝜆𝑇 = [−𝑅′′ (0)]−1/2, where we have in mind
that 𝑅(𝑟) is the direction averaged correlation function of, say, the
magnetic field, as in Eq. (14). Then one can show that an estimate of
the effective Reynolds number can be written as Re = (𝜆𝑐/𝜆𝑇 )2/𝐶𝜖 .
This quantity is measurable when high-resolution data is available,
and may be further developed into an estimate of the effective vis-
cosity, as shown by Bandyopadhyay et al. (2020b). The above rela-
tionships should be viewed as semi-empirical and, while motivated
by theory, should not be treated as exact in any sense, since the
underlying theories are mainly hydrodynamic (and collisional) and
usually founded on simple assumptions of rotational symmetry or
incompressibility.

Based on the above results and given the unique nature of the
analysis developed so far, we conclude that the present approach to
quantifying collisional-like dissipation in collisionless plasma tur-
bulence warrants further investigation. Already we have seen herein
that examination of conditional averages of pressure-strain interac-
tion and electric work, which themselves are exact statements of
energy conversion rates, provides a basis for finding effective dif-
fusion coefficients. With apparently reasonable values of (effective)
Reynolds numbers, viscosities, and resistivities in hand, the door is
opened to examining a class of relationships that may help bring tur-
bulence theory concepts into greater contact with turbulent plasma,
as we have described above. There is clearly much more to do in the
complex subject of plasma turbulence, and the present work offers a
small step in a possibly useful direction.
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